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Nonlinear refraction traveltime tomography

Jie Zhang* and M. Nafi Toksozf

ABSTRACT

A few important issues for performing nonlinear re-
fraction traveltime tomography have been identified.
They include the accuracy of the traveltime and ray-
path calculations for refraction, the physical information
in the refraction traveltime curves, and the character-
istics of the refraction traveltime errors. Consequently,
we develop a shortest path ray-tracing method with an
optimized node distribution that can calculate refrac-
tion traveltimes and raypaths accurately in any velocity
model. We find that structure ambiguity caused by short
and long rays in the seismic refraction method may influ-
ence the inversion solution significantly. Therefore, we
pose a nonlinear inverse problem that explicitly mini-
mizes the misfits of the average slownesses (ratios of trav-
eltimes to the corresponding ray lengths) and the appar-
ent slownesses (derivatives of traveltimes with respect

INTRODUCTION

Using seismic refraction traveltime data for imaging the
subsurface has long been a standard technique. It is appeal-
ing because of its low-cost field operation and easy data in-
terpretation. However, conventional processing of refraction
data falls short of showing the true strength of this technique
because conventional processing uses oversimplified geome-
try and media, although it does attempt to develop unique
physical concepts from refraction traveltimes. On the other
hand, modern tomography methods seem to ignore the value
of physical concepts that have been already established for
the refraction problem. For example, the derivatives of trav-
eltimes with respect to distance that are explicitly used in the
conventional methods [e.g., the generalized reciprocal method
(Palmer, 1980)] are not accounted for in refraction traveltime
tomography. Existing refraction tomography methods simply

to distance). As a result, we enhance the resolution as
well as the convergence speed. To regularize our inverse
problem, we use the Tikhonov method to avoid solving
an ill-posed inverse problem. Errors in refraction travel-
times are characterized in terms of a common-shot error,
a constant deviation for recordings from the same shot,
and a relative traveltime-gradient error with zero mean
with respect to the true gradient of the traveltime curve.
Therefore, we measure the uncertainty of our tomogra-
phy solution using a nonlinear Monte Carlo approach
and compute the posterior model covariance associated
with two different types of random data vectors and one
random model vector. The nonlinear uncertainty analy-
sis indicates that the resolution of a tomography solution
may not correspond to the ray coverage. We apply this to-
mography technique to image the shallow velocity struc-
ture at a coastal site near Boston, Massachusetts. The
results are consistent with a subsequent drilling survey.

match the absolute traveltimes using a least-squares criterion
as do other tomography methods (e.g., reflection and crosshole
tomography).

A number of refraction traveltime tomography methods
have been developed. White (1989) described a refraction trav-
eltime tomography method that applies a two point raytrac-
ing algorithm and solves a damped least-squares problem for
both velocities and refractor depths. The inverse problem is
regularized with a gradient smoothing operator in a creep-
ing manner [for notation, see Scales et al. (1990)]. Zhu and
McMechan (1989) performed refraction tomography using an
analytic traveltime solution; their tomography approach is the
same for the crosswell geometry (McMechan et al., 1987) and
requires the initial model to have positive velocity gradients.
Stefani (1995) showed a turning-ray tomography which is sim-
ilar to White's (1989), but he inverted for velocities only. Us-
ing a finite-difference approach to solve the eikonal equation
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without rays involved, Ammon and Vidale (1993) developed
a refraction traveltime tomography method that regularizes
the inverse problem with second-order model derivatives in a
jumping fashion [for notation, see Scales et al. (1990)]. Because
Ammon and Vidale explicitly construct a sensitivity (Frechet-
derivative) matrix by repeating the forward calculation for
each perturbed slowness cell, their approach is limited to a
small number of model grids.

The existing techniques for refraction traveltime tomogra-
phy are limited because of the ray-tracing approach used, or
because they encounter ill-posed inverse problems or both.
They also ignore the derivative information in the refraction
traveltime data. In addition, some of these methods display
raypaths to show the resolution of the solution; others use a
resolution matrix to estimate the uncertainty associated with
fixed raypaths. The nonlinear uncertainty of a refraction to-
mography solution has not been explored.

The use of the traditional two-point ray-tracing algorithms
limits the accuracy of tomography inversion. The ray meth-
ods suffer from the problem of converging to a local mini-
mum traveltime path and occasionally missing the global mini-
mum (Moser, 1991). Comparison of several existing ray-tracing
methods indicates that the finite-difference solution to the
eikonal equation by Vidale (1988) is the fastest one (Matarese,
1993). However, Qin et al. (1992) showed that the finite-
difference approach (Vidale, 1988) violates causality when the
velocity contrast is larger than because of expanding a
square wavefront. Hole and Zelt (1995) applied a partial cor-
rection to Vidale's finite-difference solution on the basis of
Fermat's principle. A complete correction to the finite-dif-
ference solution by expanding its virtual wavefront with
Huygens's principle can guarantee the global minimum travel-
times in any complex model (Qin et al., 1992), but it loses the
simplicity in the finite-difference method by Vidale (1988) and
becomes more expensive.

An ill-posed inverse problem must be properly regularized
in order to obtain a stable solution, which is independent of
the model discretization (Delprat-Jannaud and Lailly, 1993;
Zhang et al., 1996). Rodi (1989) and Zhang et al. (1996) showed
that regularizing the model stepsize (creeping) rather than the
model itself (jumping) cannot ultimately avoid solving an ill-
posed inverse problem. Further, not all the regularization ap-
proaches perform well, and an appropriate criterion for refrac-
tion traveltime tomography must be defined.

In this study, we present a nonlinear refraction traveltime to-
mography method that consists of a new version of the shortest
path ray-tracing approach (SPR), a regularized nonlinear in-
version method that inverts "traveltime curves" rather than
traveltimes alone, and a Monte Carlo method for nonlinear
uncertainty analysis of the final solution. We demonstrate the
application of this approach to real data from a small-scale
refraction survey conducted at a coastal site near Boston,
Massachusetts.

CALCULATING REFRACTION TRAVELTIMES
AND RAYPATHS

To conduct a tomography study, we need a ray-tracing tech-
nique to calculate both traveltimes and raypaths of the first-
arrival refractions or turning rays. Ray tracing is the most time-
consuming step of nonlinear seismic traveltime tomography.

Accuracy of both traveltimes and raypath loci is also impor-
tant because the accuracy of the tomography inversion in part
depends on the errors introduced by the forward calculation.
In particular, the calculation of refraction traveltime has been
difficult simply because of its highly variable raypath.

Recently, tremendous progress has been made in develop-
ing wavefront ray-tracing methods on a regular grid. These in-
clude three categories; solving an eikonal equation using finite-
difference methods (e.g., Vidale, 1988; Qin et al., 1992, Hole
and Zelt, 1995), applying an analytical solution to expand a
wavefront (e.g., Vinje et al., 1993), and using graph theory to
expand a wavefront by finding the shortest path (e.g., Moser,
1989, 1991; Saito, 1989, 1990). Wavefront methods are attrac-
tive because they can simulate wave propagation in the entire
model and find diffracted raypaths, head waves, and raypaths
to shadow zones. Among those methods, we chose the shortest
path ray-tracing method (SPR) because it is more flexible and
one can achieve desired accuracy by adjusting the graph tem-
plate size. However, for highly accurate results, the methods of
Saito (1989, 1990) and Moser (1989, 1991) require vast mem-
ory and intensive calculation. Recent improvements have been
made by Fischer and Lees (1993) and Klimes and Kvasnicka
(1993).

Seismic raypaths can be found by calculating the shortest
traveltime paths through a network that represents the earth.
The network consists of nodes, and the node connection is
based on a graph template. The SPR method includes three
steps: (1) timing nodes along an expanding wavefront from its
original source or secondary source, (2) finding the minimum
traveltime point along the wavefront and taking this point as a
new secondary source, and (3) expanding the wavefront from
this minimum time point. These three steps are repeated until
the whole model is traced. With a small number of ray legs in a
graph template, SPR usually yields zig-zag raypaths in homo-
geneous or smooth velocity zones in the model, and produces
longer raypaths (Fischer and Lees, 1993). We improve the SPR
method by sampling the wavefront with a uniform angle cover-
age and eliminating unnecessary nodes in the slowness network
by analyzing the slowness model prior to ray tracing.

The traveltime errors in SPR result from space and angle
discretization. These two errors are independent, that is, de-
creasing the grid size does not reduce the error due to a finite
angle coverage (Moser, 1991). The error due to the angle dis-
cretization can be reduced by optimizing the node distribution
in a graph template prior to the ray tracing. Because the angle
error is associated with the largest angle that can be sampled by
rays in a graph template, the angle differences for a given num-
ber of rays in a graph template should be minimized for accu-
rate calculation. Figure 1 shows two different graph templates
that contain two nodes on each grid boundary. The regular
node distribution shown by the dash line was used previously
with a 1 = 0.25dx, a2 = 0.5dx, and a3 = 0.25dx (Nakanishi and
Yamaguchi, 1986; Moser, 1991). The solid line shows the
iso-angle node distribution that we use. When we choose
b 1 = 0.29289dx, b2 = 0.41421dx, and b3 = 0.29289dx (see Fig-
ure 1), the angle between two adjacent rays in each cell is equal
(22.5°). If the number of nodes on each grid boundary is more
than two, then the optimized propagation angles cannot be
exactly equal, but they can be optimized to have a minimum
difference. Further node optimization is made by analyzing the
velocity model prior to the ray tracing. Instead of timing all the
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network nodes with the same graph template, the areas in the
model that are smooth enough (i.e., having velocity variations
less than a predetermined value) are eliminated on the basis of
a velocity-gradient lookup table. This results in a sparse node
distribution in the model. The use of this sparse-node model
avoids the zig-zag raypath problem and enhances numerical
efficiency as well.

Figure 2 shows a comparison of traveltime errors caused by
different node distributions used in a ray-tracing calculation
(i.e., regular node, iso-angle node, and iso-angle and sparse
node). The model consists of two layers and is gridded into
200 x 50 uniform cells (spacing interval 1.0 m). In this example,

we show results using only two nodes on each cell boundary,
as shown in Figure 1. In modeling real data, we usually use
four or five nodes on each cell boundary for higher accuracy.
Regular nodes produce large errors in some areas, including
refraction in this case because of uneven angle sampling. With-
out additional computational effort, simply adjusting the node
distribution according to Figure 1 reduces the error by nearly
50% for refraction traveltimes. Further optimizing the nodes
by eliminating those in the smooth-velocity areas prior to ray
tracing gives results with negligible errors.

MINIMIZING A PHYSICALLY MEANINGFUL
OBJECTIVE FUNCTION

We solve a regularized nonlinear inverse problem. Starting
from an initial model, we iteratively update traveltimes and
raypaths without assuming any interfaces or velocity function-
als as defined by few parameters in the model. The solution
of the refraction traveltime inversion is nonunique. There are
many solutions that can predict the observed data equally well.
However, not all these solutions are physically meaningful.
To obtain one optimal solution, our strategy is to establish
quantitative criteria for a meaningful data fit and a meaning-
ful model correlation when sufficient physical concepts are in-
volved. Instead of inverting absolute traveltimes, we minimize
the misfits of the average slownesses (traveltimes divided by
ray lengths) and the apparent slownesses (traveltime deriva-
tives with respect to distance). We apply the Tikhonov regu-
larization (Tikhonov and Arsenin, 1977) to explicitly constrain
the model roughness. Specifically, we minimize the following
objective function,

ID(m) = (1-w)IlCt(d- G(m))11 2 +wlID,,(d- G(m))II 2

FIG. 1. Two graph templates for the shortest path ray-tracing
method. A star denotes the regular-node template that samples
the grid interface equally (a 1 = 0.25, a2 = 0.50, and a3 = 0.25);
the open circle represents the iso-angle node (b 1 = 0.29289dx,
b2 = 0.41421dx, and b3 = 0.29289dx). The iso-angle node dis-
tribution allows the angles between two adjacent rays in each
cell to be approximately equal, reducing error due to the angle
discretization.

+rIIRm11'	 (1)

_ (1- a))IId -G(m)II I +wild -G(m)II I

+ r1IRmII 2 	(2)

(1 — w)S1+wS2 +rS3,	 (3)

FIG. 2. Comparison of ray-tracing accuracy due to different graph templates used in the shortest path method. A two-layer model
(200 x 50 m) is discretized with a grid size of 1.0 m. The upper layer velocity is 2500 m/s, the lower layer velocity is 4500 m/s. Using
two regular nodes on each cell interface produces refraction traveltime errors up to 0.4 ms. Shifting these two nodes to achieve
equal angles (22.5°) reduces the refraction traveltime error to 0.2 ms. Further eliminating nodes in the homogeneous areas reduces
the error to a negligible level.
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d def d : average-slowness data, 	 (4)

def ad
d	 ax : apparent-slowness data, 	 (

5 
)

where d is the traveltime data; G (m) is the calculated traveltime
data for the current model m, and Ce is an operator that scales
a traveltime with the corresponding ray length .E, and returns
an average slowness d, along the raypath. Here, the ray length
£(m), is a variable parameter which is updated iteratively in the
tomography inversion. Later, we will show that using the shot-
receiver distance to replace £ in the inversion plays the same
role as f. Dx is a differential operator for traveltime with respect
to distance, d = D,1d returns the gradients of the traveltime-
distance curves (apparent slownesses), R is a regularization
operator (e.g., derivative operator), r is a smoothing trade-off
parameter, and w is a weighting factor between the average-
slowness misfit norm and the apparent-slowness misfit norm.
As one can see, the objective function (1) contains three terms
all associated with slownesses in one way or another: the misfit
of average slownesses, the misfit of apparent slownesses, and
the roughness of model slowness.

Inversion algorithm

We want to avoid explicitly dealing with the sensitivity ma-
trix in the inversion, that is, one should implicitly account for
the effects of sensitivity matrices rather than explicitly con-
structing or storing them for the inversion (Scales, 1987; Mackie
and Madden,1993; Zhang et al., 1995). For example, using the
Gauss-Newton (GN) method to linearize the stationarity equa-
tion associated with minimizing the objective function (1) and
then applying a conjugate gradient (CG) technique to solve
the inversion for each iteration (Scales, 1987) is one of these
approaches. Directly minimizing the objective function using
a CG method (Nolet, 1987) is another. Both techniques avoid
the storage of any matrices, but only store the results of a ma-
trix multiplying a vector or its transpose multiplying a vector.
We take the first approach to demonstrate our concepts in in-
verting refraction traveltime data. This leads to the following
equation,

((1 — w)Ak Ak +WBk Bk + AR T R + EkI)Omk

_ (1— w)Ak (d — O(mk)) + wBk (d — O(mk))

— TR T Rmk,	 (6)

def aG_	 aG

A	

1

 am £ am 	
(7)

B def aG — 3 2 G	(8)

am amax ,

mk+1 = mk + Amk,	 k=1,2,3,...,N,	 (9)

where each nonzero term in A k (average-slowness sensitivity
matrix) contains the length of a local ray across a model cell
divided by the entire ray length, and each nonzero term in
Bk (apparent-slowness sensitivity matrix) represents the dif-
ferences of the ray lengths in a cell divided by the receiver

spacing when the locations of two adjacent receivers are used
to calculate derivatives.

Linearizing a nonlinear inverse problem in an iterative fash-
ion may be highly efficient for numerical computation. Lin-
earization does not necessarily lead to a "poor" solution or miss
the "global" solution. In fact, the suitability of linearization de-
pends on how a nonlinear function is linearized and for what
scale the linearization is applied, rather than linearization it-
self. We account for nonlinearity by adding a variable damping
parameter in the GN method as suggested by Morgan (1981).
Because we explicitly minimize model roughness as described
by equation (1), large nonlinearity occurs only in the early in-
version stage due to a poor starting model, and the objective
function approaches a quadratic form when the data misfits
[S1 and S2 in equation (1)] are small and the model roughness
(S3 ) becomes dominant. Following a procedure described by
Morgan (1981), we add a variable damping term EkI, to the
left-hand side of equation (6) with E k = a x rhs, where a is an
empirical parameter (about 0.1) and rhs is the rms misfit norm
of the right-hand side of equation (6). If the objective function
is not minimized well and remains quite nonlinear, then rhs is
large and a large damping E k is automatically applied, resulting
in only small model updates. With the inversion proceeding
further and rhs decreasing, a smaller E k drives the convergence
speed faster. Several authors have applied this approach to
solve nonlinear electrical tomography problems (e.g., Mackie
and Madden,1993; Zhang et al., 1995).

Average-slowness and apparent-slowness data

We chose to minimize the misfits of average-slowness and
apparent-slowness data instead of absolute traveltimes (inte-
grated slownesses). This leads to the inversion of traveltime
curves rather than traveltimes alone. Inverting average slow-
nesses tends to reconstruct the shallow earth structure, whereas
inverting apparent slownesses helps recover the deep structure.
Hence, jointly inverting both average-slowness and apparent-
slowness data with a variable weighting factor allows us to iso-
late data information and invert for the slownesses progres-
sively from the shallow to the deep structure.

Figure 3 shows several possibilities for calculated traveltimes
that give the same rms traveltime misfit but may correspond
to different models. The calculated traveltime at the receiver
Ro is assumed to be fixed. If the next receiver is placed at

11

dxl Ri 	,o traveltime curve

Rc 0 ^^ ' ' dx2 '

Distance

Fig. 3. Schematic traveltime fit. The calculated traveltimes at
R 1 , R2 , and RZ all have the same rms misfit, but their traveltime
gradients relative to Ro fit the data gradients differently.
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FIG. 4. Numerical experiment for resolving a graben model containing a near-surface low-velocity zone. (a) "True" velocity model
(200 x 50 m) gridded into 200 x 50 cells, raypaths for 12 sources and 48 receivers on the surface, and an estimated starting model for
inversion. (b) With the third-order derivative regularization, inversion results from inverting traveltime data only, average slownesses
only (ratios of traveltimes to the ray lengths), or both average slownesses and apparent slownesses (traveltime gradients). The last
one shows the best performance for resolving the graben shape and velocities. (c) Inverting average slowness and apparent slowness
data, tomography results using first-order derivative operator (over-smoothed), second- and fourth-order derivative operators for
regularization. (d) Uncertainty analysis using nonlinear Monte Carlo inversions. It shows percent standard error in the reconstructed
slowness values as a function of position, and model correlation at two selected points. (e) Uncertainty analysis using linearized
Monte Carlo inversions. It correctly estimates the variance of the first point, but fails for the second point where rays do not pass.
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R l or R2 and the rms traveltime misfit remains constant, then
the apparent-slowness misfits (traveltime gradient) for R l and
R2 are different, implying two different models. One must ac-
count for the receiver spacing when measuring the traveltime
misfit. For the same receiver location (R 2 and RZ), the same
rms traveltime misfit may also correspond to two different trav-
eltime gradients. Jointly inverting average-slowness data and
apparent-slowness data, one can reconstruct a model that fits
the traveltime curves rather than data points alone.

Figure 4a shows a numerical model consisting of 200 x 50
cells with a uniform grid spacing of 1.0 m. Its velocities range
from 600 to 4500 m/s, and the structure consists of a near-
surface low-velocity zone and a deep graben refractor. A total
of 12 shots are assumed with 48 surface receivers at a 4.0 m
spacing. Figure 4a also illustrates the first-arrival raypaths for
this survey. We first estimate the upper-bound velocities using
a GRM-type velocity analysis function (Palmer, 1980) and con-
struct a two-layer starting model. Figure 4b demonstrates to-
mography results obtained by inverting different types of data:
integrated slownesses, average slownesses, and jointly average
slownesses and apparent slownesses. A third-order derivative
operator [R in equation (1), further discussion will follow] is ap-
plied in all three inversions for regularization, and appropriate
parameters are selected so that all these inversions converge to
the same rms traveltime misfit (0.1 ms). It appears that invert-
ing the absolute traveltimes tends to overestimate the features
in the deep structure. Given an initial guess of the model, a
larger misfit almost always occurs for the longer range travel-
times. Therefore, inverting the absolute traveltimes attempts
to produce deep features before the shallow structure is well
reconstructed and quickly reduces the misfit variance mostly
associated with long rays. On the other hand, inverting aver-
age slownesses constrains the shallow velocities, but cannot
precisely reproduce the deep structure due to a larger misfit
variance allowed for the longer rays. Finally, an optimal so-
lution can be obtained only by jointly inverting the average
slownesses and the apparent slownesses.

Figure 5 illustrates the progress of the inversion in terms of
rms average-slowness misfit, rms apparent-slowness misfit, and
the objective function. Two experiments are conducted. One,
inverts average-slowness data only, the other, inverts average-
slowness data during the first six iterations and jointly inverts
apparent-slowness data from the seventh iteration when the

misfit of the average-slowness data is sufficiently small. It ap-
pears that the misfit of traveltime gradients rapidly decreases
after the inversion starts to explicitly minimize the misfit of
apparent slowness (see Figure 5b). An appropriate weighting
factor [win equation (1)] is selected so that the rms misfit of the
average slowness and the apparent slowness converge to a sim-
ilar variance, corresponding to the compatible resolving capa-
bility. Figure 5a shows that one can also invert pseudo—average
slownesses (traveltimes divided by shot-receiver distances) in-
stead of "true" average slownesses (traveltimes divided by
ray lengths). In terms of misfit measurements, they are nearly
identical, but inverting pseudo—average slownesses avoids
tracking exact ray lengths and thus saves computation time.

Figure 6 shows the traveltime fit for the noise-free data at
iteration 4 (inverting average slowness only) and at iteration 25
(jointly inverting average slowness and apparent slowness from
the seventh iteration). At an early inversion stage (iteration 4),
traveltimes associated with short rays are preferentially fitted.
With the inversion proceeding, traveltimes associated with long
rays are also fitted well due to inverting the traveltime gradients
(apparent slowness) until the misfit of the traveltime curves
becomes negligible (iteration 25).

Traveltime calculation is the most time-consuming step of
nonlinear traveltime tomography. As we described earlier, our
traveltime calculation method defines a node distribution on
the basis of the model complexity. Therefore, the CPU time for
each inversion iteration is nonuniform. Figure 7 presents CPU
time for the tomography experiment inverting both average-
slowness data and apparent-slowness data. Given a simple two-
layer starting model, the inversion is fast at the beginning,
but becomes slow when the detailed features appear in the
model, and eventually stabilizes when the whole model is re-
constructed. This calculation was conducted on a DEC 3000
workstation.

Tikhonov regularization

When an inverse problem is ill-posed, regardless of how
sophisticated the optimization approach is, there can be no
definitive "solution" solely on the basis of fitting the data. In
other words, minimizing only the data misfit (even including
the traveltime gradient data) does not have one "global so-
lution." Of course, one could increase the grid size up to the

Average slowness misfit

inv. average slowness

10 
q - inv. average and apparent

slowness 1
inv. pseudo average slownes

N and apparent slowness y

N N

10
----- — --------_.-.

0 5	 10	 15	 20	 25	 30

Inversion Iteration

1^

Apparent slowness misfit
103

inv. apparent slowness
^r	 starts

105

5	 10	 15	 20	 25	 30 10 
C

Inversion Iteration

Objective function

add misfit term of
apparent-slowness data

20	 25

Inversion Iteration

FIG. 5. Two inversions using the third-order derivative operator for regularization but minimizing different data misfits are con-
ducted for the model shown in Figure 4a. One inversion (solid curve) inverts average-slowness data only, the other (dash curve)
inverts average-slowness data for the first six iterations, then jointly inverts average-slowness and apparent-slowness data. The ap-
parent-slowness misfit is always calculated and displayed for both inversions even when it is not minimized. Note a rapid decrease
of the rms misfit of the apparent slownesses when it is explicitly minimized. The objective function becomes slightly larger because
of the sudden inclusion of an e 2 norm of the traveltime gradient misfit.
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point where the number of grids is equal to the rank of the
least-squares matrix. But such a coarse model would not be
sufficient to produce accurate forward solutions. For refraction
traveltime tomography, most methods attempt to apply ad hoc
constraints to keep the inversion stable. These include filling
areas between rays with nonzero sensitivity (e.g., Cai and Qin,
1994), applying model gradient derivatives to damp the model
step size in a creeping manner (e.g., White, 1989), or using a
posterior low-pass filter to smooth the model itself after each
iteration (e.g., Zhu and McMechan, 1989). We chose to solve an
inverse problem that explicitly minimizes data misfit as well as
model roughness using the Tikhonov regularization that miti-
gates an ill-posed inverse problem and provides parameter con-
straints for an infinite number of unknowns (Delprat-Jannaud
and Lailly, 1993; Zhang et al., 1996).

Applying Tikhonov regularization involves the use of model
derivative operators, and may produce a "smooth" solution.
However, when we say "model smoothness" or "model rough-
ness," we must ask, "by what criterion?" In fact, we found that
not all smoothness criteria of the Tikhonov method perform
equally well for refraction traveltime problems. We investigate
the following criteria:

first-order smoothing: R = 0,

S3 = f (Om(x))2 dx,	 (10)

second-order smoothing: R = V 2 ,

S3 = f(V2M(X))2  dx, 	 (11)

third-order smoothing: R = 0 3 ,

S3 = f(V3M(X))2 dx, 	 (12)

fourth-order smoothing: R = V 4 ,

S3 = f (V4M(X))2  dx.	 (13)

Each of these derivatives yields one criterion of smoothness.
One can also apply a higher order derivative operator and de-
fine a different smoothness criterion for inversion. Figure 4c

Traveltimes after iteration 4

shows a comparison of the inversion results for smoothness of
three different criteria; the first-order smoothing, the second-
order smoothing, and the fourth-order smoothing. The inver-
sion result with the third-order operator is already shown in
Figure 4b. All these numerical experiments are performed by
inverting both average-slowness and apparent-slowness data.
We select appropriate parameters to allow them to converge
to the same misfit level.

The results show that the use of the first-order smooth-
ness criterion for smoothing (gradient smoothing) produces
over-smoothed images, whereas the higher order derivative
operators allow us to recover the nonlinear variations in slow-
ness. Although various theoretical studies (e.g., Rodi, 1989;
Delprat-Jannaud and Laily, 1993) were conducted to find the
roles of the regularization operators in geophysical inversion,
the use of the first-order derivative operator is numerically
equivalent to the application of a linear interpolation method
in the model space, and the minimization of the second or
higher order model derivatives is equivalent to the application
of nonlinear interpolation methods. In particular, the use of
the second-order derivative operator corresponds to the cubic
spline interpolation. If the slowness variations in the earth are
Iinear, the first-order smoothness criterion should be sufficient
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FIG. 7. CPU run times for each inversion iteration. Note they
are not equal because our forward traveltime calculation de-
pends on model heterogeneity and because inversion of the
apparent slowness data starts at the seventh iteration.

Traveltimes after iteration 25
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FIG. 6. Traveltime data fit at iteration 4 and iteration 25. It demonstrates that tomography tends to fit the near-shot traveltimes
more accurately in the early inversion stage, and fits the long-offset traveltimes later in the inversion.
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for regularization. However, in the real earth, we often en-
counter nonlinear variations in slowness. Therefore, nonlinear
interpolation schemes must be applied.

From these experiments, one can also observe that the reso-
lution increases with the solution uncertainty (see Figure 4c).
Applying higher order smoothness criteria tends to cause the
slowness (or velocity) to oscillate wildly near the structure in-
terfaces where the deep rays pass. To reduce oscillation for the
fourth-order smoothing operator, we actually had to force the
highest velocity in the model to be less than 4800 m/s, which was
estimated using the GRM method (the highest true velocity is
4500 m/s). Similarly to the performance of spline interpola-
tion/extrapolation (Press et al., 1992), we found that minimiz-
ing the second- or third-order model derivatives is more stable
and has less possibility of nonphysical oscillations.

MEASURING NONLINEAR UNCERTAINTY

A complete solution to any inverse problem must address
issues of uncertainty. Two important approaches in geophysics
are the Backus-Gilbert method (Backus and Gilbert, 1968,
1970), measuring uncertainty in terms of spread, and Bayesian
inference (Tarantola, 1987), characterizing uncertainty com-
pletely through the posterior covariance operator. We apply
Monte Carlo methods to measure variance and resolution from
the posterior model covariance associated with our regularized
inverse problem. Monte Carlo methods require inverting data
vectors with random errors starting from models with random
perturbation for many realizations until the posterior model
covariance can be well approximated. We shall compare the
performance of nonlinear and linearized Monte Carlo meth-
ods in dealing with the refraction traveltime problem.

Unlike in the waveform problems, noise influences travel-
time data implicitly. Although numerical algorithms can be
applied to pick traveltimes automatically, the user often has
to determine where the first-break energy starts on the basis
of the traveltime moveout. Errors in the refraction traveltime
data are not arbitrarily "random" and generally do not have a
zero mean for the "true traveltimes" from a statistical point of
view. From our experiences with numerous field experiments,
we found it often difficult to determine an accurate zero shoot-
ing time even with a modern recording system for the large
crustal imaging projects or an electronic trigger system for the

a)	 b)

small-scale surveys. For instance, in the latter case, a constant
trigger threshold under different near-surface geological con-
ditions may lead to different trigger delays. Therefore, we de-
fine two types of errors: (1) common-shot error, a random shift
for traveltimes at all the receivers from the same shot, and (2)
a traveltime-gradient error, which is caused by the traveltime-
picking uncertainty.

We further demonstrate the error pattern in the refraction
traveltimes with synthetics. Figure 8 displays noise-free syn-
thetic traveltimes (solid curve) from the numerical experi-
ments that we described, and "picked" traveltimes with some
assumed error patterns (dash curves). It seems unlikely that
one would pick such rough traveltimes for inversion as those
shown in Figure 8a. Accordingly, assuming Gaussian errors for
the absolute traveltimes is not realistic, and inclusion of addi-
tional random shooting-time errors is not realistic either (see
Figure 8b). In fact, in most cases, one would pick traveltimes
by identifying the moveout of the first-break waves rather than
picking a time solely based on a single trace. This leads to the
possible picked traveltime curves that one may determine as
shown in Figure 8c, which contains common-shot error and
traveltime-gradient error. Therefore, for uncertainty analysis
with the Monte Carlo methods, we need to construct two ran-
dom vectors for data errors and one random vector for model
perturbation with uncorrelated normal Gaussian distribution:

dk = d +e
(1)
 , et - N(0, cr ), (14)

dk = (d + ek21) + dkAx, eke) "' N(0, Q2) , (15 )

mk = m, + ek31, 	ek31 ^ N(0, mss) ,	(16)

k=1,2,...,K,

where d is a data vector and d is a data-gradient vector, ekl^

is the traveltime-gradient error, d k is the data-gradient vec-
tor perturbed by error ek' ) , ek2) is the shooting-time error, dk is
a data vector perturbed by both the shooting-time error and
the traveltime-gradient error, Ax is the receiver spacing for
which we consider the traveltime gradient, m is the solution
of our nonlinear tomography inversion, and m k is a model vec-
tor perturbed by error ek3^. Because of our objective function

C)

1IttIIIJJ
Distance (m)	 noise-free traveltimes

------- noisy traveltimes

FIG. 8. Noise-free synthetic traveltimes and "picked" traveltimes with an assumed noise pattern. (a) Adding random Gaussian noise
to the absolute traveltimes. (b) Adding random Gaussian noise to the absolute traveltimes and to each shot record. (c) Adding
random Gaussian noise to the traveltime gradients and also adding random Gaussian noise to each shot record. Pattern (c) is
realistic for the refraction problem.
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definition, we can directly take the rms apparent-slowness mis-
fit to be the variance of the traveltime-gradient error a, and
use the rms average-slowness misfit for the variance of the
model perturbation Q3. The variance of shooting times can be
estimated using the near-shot traveltimes or simply half of the
period of the refracted wave to account for the variance of
trigger responses.

After solving K realizations, we compute the posterior co-
variance matrix (Matarese, 1993),

x
C. =  Y,(mk — moo)(thk — m.) T ,	 (17)

K k=1

where m k is the solution of the kth realization. In practice, we
estimate a convergence criterion So for the objective function
and only accept those realizations with the value of the objec-
tive function less than So .

We measure variance and resolution of our regularized non-
linear solution from the matrix C.. The square roots of the
diagonal elements in Cm can be interpreted as "error bars" de-
scribing the uncertainties on the posterior values of the model
parameters. More importantly, model correlation tells how well
each point is resolved (Tarantola, 1987). For a point i, its cor-
relation with the entire model is given by

Cm (l, n)
P`(n) _ (Cm(i, i))

112
(Cm(n, n))1f2' n = 1, 2, ... N,

(ls)
where N is the total number of model parameters. If the poste-
rior correlation is close to zero, the posterior uncertainties are
uncorrelated. If the correlation is close to +1, the uncertain-
ties are highly correlated, indicating that the parameters have
not been independently resolved by the data set, and are only
linear combination of some values. If the correlation is close to
—1, the uncertainties are highly anticorrelated.

For the numerical experiment that we performed, we show
uncertainty measurements using a nonlinear Monte Carlo ap-
proach (250 realizations), that is allowing the raypath to be
perturbed in each realization (see Figure 4d). The solution is
obtained by minimizing the misfit of the average-slowness and
apparent-slowness data, and the inversion is regularized by the
third-order Tikhonov method. The results show that common-
shot error primarily influences the near-surface structure, par-
ticularly near the shot locations. The traveltime-gradient er-
ror mainly produces uncertainty along the deep rays. Model
correlation results from the nonlinear realizations show that
two particular points that we select are fairly well resolved.

It is interesting to observe that a better resolution is shown
for the deep point right above the graben bottom where rays
actually do not pass. This occurs because nonlinear traveltime
tomography would not allow the velocities above the graben
refractor to be arbitrary. If the velocities are too high, the deep
rays would move up and reduce the velocities. If they are too
low after the random model perturbation, regularized inver-
sion would remove the low-velocity features which are not re-
quired for fitting the data. Therefore, areas where rays do not
pass may not be resolved poorly. We also performed linearized
Monte Carlo inversions to measure uncertainty by fixing the
raypaths for each realization (see Figure 4e), which are much
faster than the nonlinear approach. For the same model point

in the shallow low-velocity zone, applying linearized Monte
Carlo method yields a resolution estimate similar to the result
obtained by using the nonlinear Monte Carlo inversions. This
is because many rays pass through the area, and the fixed ray-
paths are sufficient to constrain the whole area in the model. On
the other hand, linearized Monte Carlo inversions fail to de-
lineate the resolution of the second model point where rays do
not pass. Since insufficient ray coverage often occurs in the re-
fraction traveltime problem, applying nonlinear Monte Carlo
inversions is a necessary step for measuring uncertainty.

INVERTING FIELD DATA

Our nonlinear refraction traveltime tomography method has
been applied to several field data at different geometry scales.
We shall demonstrate its application to a small-scale survey
at a coastal site near Boston, Massachusetts. The goal of the
survey was to locate those areas where bedrock is deep so
that construction of a new storm-drainage system may proceed
without costly blasting. The environment at the working site
was quite unusual because the survey area was covered by sea
water during the high-tide period, and exposed for only 1-
2 hours during low tide each day. Further details of the project
are reported by Kutrubes et al. (1996).

Twenty-four geophones with 10-ft (3.05-m) spacing were
used. Surveys along two adjacent short lines (each 230 ft or
70.1 m) were conducted with 12 shots for each line. Figure 9a
shows the seismic waveforms recorded from a forward shot and
a reverse shot on line 1. Data from both shots show delayed
first arrivals between receivers 7 and 14, although the topog-
raphy along line 1 is flat. Moreover, the amplitudes of these
delayed first arrivals are relatively small. This evidence sug-
gests that a low-velocity zone with strong seismic attenuation
exists beneath receivers 7 to 14. It became obvious when we
placed sources (hammer and Betsy Seisgun) at locations be-
tween receivers 7 and 14, the seismic energy was observed to
be significantly attenuated across all of the receivers. Although
survey line 2 is adjacent to line 1, a different structural influ-
ence was found. Figure 9b displays the forward- and reverse-
shot records on line 2. They show a relatively high-velocity
anomaly in the shallow structure. In fact, weathered sandstone
is found to outcrop at the surface in the central area.

To map bedrock topography precisely, we conducted tomog-
raphy studies with a model consisting of 250 x 100 cells for
each survey area (71.0 x 30.5 m). The results and predicted
raypaths are presented in Figures 10a and 10b. The two tomo-
grams clearly are quite consistent in terms of velocity range,
though they are reconstructed independently. They both show
three types of media: saturated sand and gravel, weathered
sandstone, and sedimentary rock. The shallow low-velocity
zone in the line-1 profile was found to be caused by organic
deposits verified by drilling. To understand the uncertainty of
our numerical solutions, we apply a nonlinear Monte Carlo
method to estimate the posterior covariance. Figure 10c shows
the posterior correlation for one particular point in each pro-
file. The point in the first profile is selected right on the bedrock
that we resolved. The solutions all show small variance with a
similar correlation size. Because the geological evidence on
the surface is fairly consistent with the near-surface image as
shown in the line-2 tomogram, we should have the same good
confidence for the bedrock image on line 1.

D
ow

nl
oa

de
d 

01
/0

3/
14

 to
 2

16
.2

01
.1

98
.3

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Nonlinear Refraction Traveltime Tomography
	

1735

FIG. 9. Waveform data from forward and reverse shots along line 1 (a) and forward and reverse shots along line
2 (b). Note the arrival-time influences caused by a shallow low-velocity zone between traces 7 and 14 along line
1, and due to a shallow high-velocity zone along line 2.

Figure 11 shows the traveltime data and calculated trav-
eltimes corresponding to the final solutions. Apparently, the
line-1 data are not fit as well as the line-2 data, primarily be-
cause of the large traveltime uncertainty over the low-velocity
zone. Accurate first-break times are difficult to pick from the
attenuated signals. However, by inverting average slownesses
and apparent slownesses and applying Tikhonov regulariza-
tion, our tomography attempts to match traveltimes with mean-
ingful data correlation and model correlation. Our tomography
results were presented one day after the field work. Drilling
from two nearby locations confirmed that our estimates of the
bedrock depths were accurate (Kutrubes et al., 1996).

CONCLUSIONS

In this study, we develop a nonlinear refraction traveltime to-
mography method. This development includes three contribu-
tions: the forward ray-tracing method, the inversion approach
that fits traveltime curves, and a nonlinear method for uncer-
tainty analysis. These three issues in the tomography problem
are of equal importance. A combination of these approaches
presents a high-performance tomography product. The tomog-
raphy method proved effective in both a numerical experiment
and a real case.
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FIG. 10. (a) Tomographic images for the line-1 and line-2 profiles. Note the shallow low-velocity zone on line 1 and the intermedi-
ate-velocity zone outcropping at the surface on line 2. (b) Raypaths corresponding to the above models. (c) Uncertainty analysis
using nonlinear Monte Carlo inversions. The posterior model correlations at two selected points are small, indicating that they are
well resolved.

FIG. 11. Field traveltime data (curves) from line 1 (a) and line 2 (b) and the calculated traveltimes (gray dots) for the resolved
models shown in Figure 10a.
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